8-1 Polar Coordinates

Polar coordinates: \((r, \theta)\)
When \(r < 0\): point is on the opposite side of the pole (origin).

Multiple polar coordinates: \(+/-\ "r"\) and \(+/-\ "\theta"\) result in multiple representations of the same coordinates.

Convert from polar to rectangular: \(x = r \cos(\theta)\); \(y = r \sin(\theta)\)
Convert from rectangular to polar: \(r = \sqrt{x^2 + y^2}\); \(\theta = \tan^{-1}(y/x)\)

8-2 Polar Equations and Graphs

Convert from rectangular to polar

Replace x with \(r \cos(\theta)\)	Try to isolate \(r \cos(\theta)\) and replace with x
Replace y with \(r \sin(\theta)\)	Try to isolate \(r \sin(\theta)\) and replace with y
Replace \(x^2 + y^2\) with \(r^2\)	Replace \(r\) with \(\sqrt{x^2 + y^2}\)
Solve for \(r\) is possible/practical	Replace \(\theta\) with \(\tan^{-1}(y/x)\)

Methods of graphing

- convert to rectangular coordinates
- make a table and use symmetry
- use \(r\)-value analysis *(graph on the Cartesian coordinate plane as reference, using \(r\) in place of \(y\))*
- use a graphing calculator *(remember to set MODE to POL, and check for radians vs degrees)*

8-4 Vectors \((A = \hat{i} + \hat{j} + \hat{k})\)

Addition (resultant): add corresponding components
Absolute Value (magnitude): three-dimensional application of the Pythagorean theorem
Scalar Multiplication: multiply each component by the scalar
Subtraction: multiply second vector by \(-1\), and then add

8-5 The Dot Product (Scalar Product)

Dot product: \(u \cdot v \cdot w = a_1a_2a_3 + b_1b_2b_3 + c_1c_2c_3\)
Angle between vectors: \(A \cdot B = |A| \cdot |B| \cdot \cos(\theta)\)
Parallel vectors: angle between the vectors = 0
Orthogonal (Perpendicular vectors): dot product = 0
8-8 Parametrics

Parametric equations: \(x = f(t); \ y = f(t); \ t \) is the independent variable

Domain and Range restrictions: 1) check \(t \), 2) domain restrictions from \(x \), 3) range restrictions from \(y \)

Graphing with table method: \([x(t), y(t)]\)

Graphing with calculator: Set MODE to PAR.

Parametrics to rectangular: Use substitution for \(x \) and \(y \); Use Pythagorean Identities for trig functions